Magic-1 Memory Subsystem Redesign

The purpose of this document is to serve as a sounding board and design document for
the redesign of Magic-1’s memory subsystem. The reason for the change is that the
SRAM to Memory Data Register (MDR) read path is the current speed-limiting path for
Magic-1, and the redesign should dramatically shorten this path by splitting it across two
halves of a clock cycle.

First, a quick overview of Magic-1’s clocking, and some history about how the current
inferior design came about.

Clocking

M-1 originally had a single clock, CLKS, with a rather simplistic notion of
synchronization. On the falling edge of CLKS, the microcode control bits would flow
through the system — enabling register operands and selecting the ALU operation. On the
rising edge of CLKS, the ALU operation’s result would be clocked into the target
register. During the high period of CLKS, the next microinstruction to be executed
would be fetched from the microcode store. On the falling edge of CLKS, those
microcode control bits would again be released and this process would repeat.

Now, let’s add memory accesses to this picture. For a memory read, the process is the
same as for enabling register operands. Microcode bits signaling a read would flow out
into the system on the falling edge of CLKS. Among those bits would be memory read
enable signals. Besides knowing that we are doing a read operation, we also need to
know the address to read from. This is computed by a combination of the virtual address
contained in the Memory Address Register (MAR) and the process’s page mapping
stored in the Page Table SRAM. In all, the following signals are required to compute the
physical read address to be placed on the address bus:

Contents of MAR (16 bits)

Contents of the Page Table Base register (16 bits)
Mode bit in the Machine Status Word (1 bit)
CODE_PTB microcode signal (1 bit)
USER_PTB microcode signal (1 bit)

To successfully do the memory read, we need to translate the virtual address (MAR
value) into the complete physical address (which will be placed on the 22-bit Address
Bus), plus drive the signal that selects between SRAM and Device physical address
spaces. Once that complete address is generated, the SRAM section must decode that
address to enable the proper SRAM chip. The SRAM chip must then be given enough
time to return the proper byte, which flows onto the Data Bus. And we’re still not done.
The bits must then flow through a bi-directional bus driver and a layer of multiplexers
before arriving at the input pins of the Memory Data Register (MDR) with enough time
to establish data setup prior to the rising edge of CLKS (which will clock the data into the
MDR).



Critical Paths

Here’s the longest read path, starting with the signal that enables the new microcode
control signals to flow on the falling edge of CLKS:

Device Signal/Description LS delay | F delay
74x273 (Ctl U10) USER_PTB microcode bit 20 7
74x02 (Mem U1A) | NOR USER_PTB, Mode bit 7 3.4
74x534 (Mem U17) | Page table base register enable 20 4.5
Fast SRAM (M U7) | 18ns Page Table SRAM 18 18
74x10 (Mem U10A) | AND Mem/Dev & MSW paging enable 10 4.1
74x244 (Mem U2) | Bus driver for Dev/Mem space signal 12 4.5
74x138 (Mem U28) | Decoder for main SRAM 22 6
Big SRAM (Mem) | Any of 512K x 8 SRAM chips 70 70
74x245 (Ctl U61) Bi-directional driver for MDR 17 55
74x157 (Ctl U52) Mux for low byte of MDR 20 6.5
74x273 (Ctl U53) Low byte of MDR setup time 20 4
Total Prop Delay: 236 133.5

This entire path must be accomplished in a half-cycle of the clock. At 3 Mhz, that means
166 nanoseconds, and at 4 Mhz, we only get 125 nanoseconds. If I went to all F parts on
this path, the best I could do would be about 3.75 Mhz (though I believe I would run into
noise problems with that many F parts).

The good news is that | don’t really *have* to do all this in a half-cycle of the clock. The
thing I didn’t consider when | designed the memory subsystem the first time was that all
of the signals that are used to translate the virtual address into the physical address could
be made available a half-cycle early. In other words, we can split this path into two parts,
and thus be limited only by the larger of the two. Here’s what it will look like:

Device Signal/Description LS delay | F delay
74x273 (Ctl U10) USER_PTB microcode bit 20 7
74x02 (Mem U1A) | NOR USER_PTB, Mode bit 7 3.4
74x534 (Mem U17) | Page table base register enable 20 4.5
Fast SRAM (M U7) | 18ns Page Table SRAM 18 18
74x10 (Mem U10A) | AND Mem/Dev & MSW paging enable 10 4.1
Total Prop Delay: 75 37

Device Signal/Description LS delay | F delay
74x244 (Mem U2) Bus driver for Dev/Mem space signal 12 4.5
74x138 (Mem U28) | Decoder for main SRAM 22 6
Big SRAM (Mem) | Any of 512K x 8 SRAM chips 70 70
74x245 (Ctl U61) Bi-directional driver for MDR 17 5.5
74x157 (Ctl U52) Mux for low byte of MDR 20 6.5
74x273 (Ctl U53) Low byte of MDR setup time 20 4
Total Prop Delay: 161 96.5




By splitting this path, I could move my theoretical clock speed ceiling all the way to 5
Mhz. Further, I would also eliminate the need to use exotic 18ns cache memory for the
page table. I could get away with using vanilla and easy-to-find 70ns 32Kx8 SRAMs.

Of course, making this change doesn’t get me all the way to 5 Mhz — | believe my next
speed path would be uncovered in instruction decode and microcode fetching before I got
there. That path determines whether to take a microcode branch (starting with rising
edge of CLKS):

MSW S bit (ALU/Reg card, U26, 74x273: 20/7 ns)

XOR w/ V bit (CTL card, U12B, 74x86: 20/6 ns)

OR w/ Z bit (CTL card, U13B, 74x32: 10/4.2 ns)

MUX (CTL card, U11, 74x151: 46/8 ns)

XOR w/ NEGATE_BR (CTL card, U12A, 74x86: 20/6 ns)

OR w/ DO_BRANCH (CTL card, U13A, 74x32: 10/4.2 ns)

AND (CTL card, U44B, 74x11: 11/4.1 ns)

MUX (CTL card, U18, 74x153: 30/7 ns)

Microcode store (CTL card, U1-U4, 55ns EPROM or 45ns PROM, 55:55ns)
Microcode gate setup (CTL Card, U6-U10, 74x273: 20/4 ns)

This adds up to 242ns with all LS parts, and 105.5 with all F parts. The big ticket items
are the MUXes, and by making those F (which I already did) along with a few of the glue
logic bits | shoudl be able to make the 125ns 4Mhz goal — but that’s pushing it. 4 Mhz
may be obtainable, but not much more. My other areas for potential speed paths are the
register -> aluop -> Z-bit path and some of the more complicated microcode field
decodes. A cursory examination suggests that neither of these will be a problem.

So, how do | make memory unit change? The first part — getting the MAR contents early
—is already done. The MAR is treated as a normal register, and thus obtains new values
on the rising edge of CLKS. Similarly, the page table base register (PTB) and mode bit
(part of the MSW) are also set on CLKS rising. However, currently the microcode bits
for USER_PTB and CODE_PTB are associated with the microinstruction that actually
does the memory operation, and thus don’t appear in the system until the falling edge of
CLKS.

The first part of the solution is simply to rewrite the microcode to require that these bits
be asserted 1 microinstruction prior to the memory reference. This is actually not a big
deal, as this same rule already applies to the MAR. There is, however, a difference. The
MAR is a register, and thus can be set any number of cycles prior to use. The microcode
bits are ephemeral — and are set only when explicitly asserted. What needs to happen
here is we will treat the setting of a new MAR register value as a general signal to capture
the complete state of a virtual address. So, we not only latch in a new MAR value from
the L bus, but we also take a snapshot of USER_PTB, CODE_PTB and (perhaps?) the
mode bit from the MSW [need to think about that one. Don’t really have to — but it might
make mode transitions easier — examine the trap/reti microcode].



Now, assume that on the rising edge of CLKS when we set a new MAR value we also
capture the rest of the bits needed for virtual to physical address translation. An issue
here is that we cannot immediately start changing the current contents of the address bus.
While memory reads happen on the rising edge of CLKS, memory writes complete on the
falling edge of CLKS. Thus, the contents of the address bus must remain stable until that
falling edge. So, what we do is have a set of registers that holds the contents of the
address bus. This register will be clocked to take a new value on the falling edge of
CLKS, but behind these registers the virtual to physical address translation will be taking
place during the high period of CLKS.

As far as device counts go, | should end up with about the same number of parts. Right
now there is a row of bus drivers that drive the address bus. Given them small number of
devices connected to the bus, I expect | can get away with eliminating these drivers and
just using the output of the address bus gating register to drive the address bus (but will
wire things up so that I could easily add drivers if needed).



